On a discretization process of fractional-order Logistic differential equation
نویسندگان
چکیده
منابع مشابه
The spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملDiscretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity
We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equa...
متن کاملRandom-order fractional differential equation models
This paper proposes a new concept of random-order fractional differential equation model, in which a noise term is included in the fractional order. We investigate both a random-order anomalous relaxation model and a random-order time fractional anomalous diffusion model to demonstrate the advantages and the distinguishing features of the proposed models. From numerical simulation results, it i...
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Egyptian Mathematical Society
سال: 2014
ISSN: 1110-256X
DOI: 10.1016/j.joems.2013.09.001